# x320 Series

# Gigabit Layer 3 PoE++/PoE Pass-through Switches

The Allied Telesis x320 Series of Gigabit Layer 3 PoE++/PoE pass-through switches offer an impressive set of features in a compact design. Flexible Power over Ethernet capabilities make them ideal for IoT device connectivity in smart buildings and business environments.

# **Overview**

Allied Telesis x320 Series are secure and reliable, offering 8 x Gigabit PoE enabled ports and 2 x SFP uplinks. Advanced power connectivity features provide flexibility and value to meet the needs of today's connected business. The x320-10GH can provide up to 90 Watts of PoE power on all ports, while the x320-11GPT can be powered by PoE<sup>1</sup>, and also pass PoE power through to connected end points. Each switch offers 8 x 10M/100M/1 Gigabit ports and flexible Gigabit uplinks.

# Flexible PoE

The x320 Series support today's commonly used PoE standards, providing 15.4 Watts of PoE (802.3af), and 30 Watts of PoE+ (802.3at). In addition, the x320-10GH also supports providing 60 or 90 Watts of PoE++ (802.3bt).

# **Continuous PoE**

Continuous PoE allows the x320 Series switches to be restarted without affecting the supply of power to connected devices. Smart lighting, security cameras, and other PoE devices will continue to operate during a software upgrade on the switch.

# **Network Management**

Vista Manager™ EX bundled with Allied Telesis Autonomous Management Framework<sup>™</sup> (AMF) meets the increasing management requirements of modern networks. While AMF allows an entire network to be securely and easily managed as a single virtual device, Vista Manager EX provides an intuitive and powerful graphical tool for monitoring and managing AMF wired, Autonomous Wave Control (AWC) wireless, and third party (SNMP) devices.

1 The x320-11GPT uses PD port 11 to receive PoE power, but cannot be powered by PoE if the AC adapter is connected

# Cybersecurity

The x320 series acting as an AMF member is compatible with our AMF-Security solution, which enables a self-defending network. The AMF-Sec controller responds immediately to any internal malware threats by instructing the x320 to isolate the affected part of the network, and guarantine the suspect device. Vista Manager EX alerts networks administrators of threats that have been dealt with.

# Network resiliency

Allied Telesis Ethernet Protection Switched Ring (EPSRing™), and the standards-based G.8032 Ethernet Ring Protection, ensure that distributed network segments have high-speed, resilient access to online resources and applications.

# Secure

A secure network environment is guaranteed. The x320 Series offers powerful control over network traffic types, secure management options, loop guard to protect against cabling mistakes, and tri-authentication for comprehensive access control.

Security from malicious network attacks is provided by a comprehensive range of features such as DHCP snooping, STP root guard, BPDU protection, and access control lists. Each of these can be configured to perform a variety of actions upon detection of a suspected attack or a malfunction.

# **Environmentally friendly**

The x320 Series supports Energy Efficient Ethernet (EEE), automatically reducing the power consumed by the switch whenever there is no traffic on a port. This sophisticated feature can significantly reduce operating costs by reducing the power requirements of the switch and any associated cooling equipment.



Yoor ,

....

Allied Telesis

------

TTT

The x320 models are fan-less, providing silent operation, which makes them ideal for desktop or work area deployment.

# **Key Features**

- AlliedWare Plus Enterprise-class operating system
- ► Allied Telesis Autonomous Management Framework<sup>™</sup> (AMF)
- ► Vista Manager EX compatible
- AMF-Security compatible
- ▶ Full 30 Watts of PoE+
- ▶ Up to 90 Watts of PoE++ (x320-10GH only)
- PoE pass-through (x320-11GPT only)
- Continuous PoE
- ▶ EPSRing<sup>™</sup> and G.8032 for resilient rings
- EPSR Master
- ► Energy Efficient Ethernet saves power
- Active Fiber Monitoring
- Static and dynamic routing
- Fanless design for silent operation
- Flexible deployment
- ► Wide operating temperature range
- Multicast Source Discovery Protocol (MSDP)
- Link Monitoring

# **Key Features**

#### Allied Telesis Autonomous Management Framework™ (AMF)

# Allied Telesis Management Framework (AMF)

- Alled relests wanagement transevor (Allin ) is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the every-day running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto- provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- AMF secure mode encrypts all AMF traffic, provides unit and user authorization, and monitors network access to greatly enhance network security.
- AMF Guest-node allows Allied Telesis wireless access points and further switching products, as well as third party devices such as IP phones and security cameras, to be part of an AMF network.

# Power over Ethernet (PoE+, PoE++, and PoE pass-through)

- The x320-10GH supports providing up to 90 Watts (PoE++) on all ports. This enables powering high power devices such as high resolution PTZ cameras with heater/blowers for outdoor applications, enhanced infrared lighting and lighting controllers, remote Point of Sale (POS) kiosks, and more.
- The x320-11GPT can supply up to 30 Watts (PoE+) to connected devices. It can be powered by an AC power adapter, or by PoE. When deployed together, the x320-11GPT can be powered by the x320-10GH, while PoE passthrough enables power from the x320-10GH to pass through the x320-11GPT to power connected end points.

# PWR300 (External Power Supply)

This PWR300 is the external Power Supply Unit (PSU) for x320-10GH. One PWR300 will power the switch and provide PoE power. Up to three PWR300 PSUs can be used to increase the available PoE power, and enable power supply redundancy.

#### **Flexible deployment**

The x320 Series can operate from -10 to +55 degrees Celsius, and with a fanless design, and using the PoE passthrough feature, are ideally suited for flexible deployment in the ceiling of smart buildings and any other areas of the business premises.

### **Continuous PoE**

Continuous PoE allows the switch to be restarted without affecting the supply of power to connected devices. Smart lighting, security cameras, and other PoE devices will continue to operate during a software upgrade on the switch.

# Ethernet Protection Switched Ring (EPSRing<sup>™</sup>)

 EPSRing allows several x320 switches to form a high-speed protected ring, capable of recovery within as little as 50ms. This feature is perfect for high performance and high availability in enterprise networks. x320 Series switches can act as the EPSR Master.

 Super-Loop Protection (SLP) enables a link between two EPSR nodes to be in separate EPSR domains, improving redundancy and network fault resiliency.

### **G.8032 Ethernet Ring Protection**

- G.8032 provides standards-based high-speed ring protection, that can be deployed stand-alone, or interoperate with Allied Telesis EPSR.
- Ethernet Connectivity Fault Monitoring (CFM) proactively monitors links and VLANs, and provides alerts when a fault is detected.

# Industry-leading Quality of Service (QoS)

Comprehensive low-latency wire speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Boosted network performance and guaranteed delivery of businesscritical Ethernet services and applications are provided. Time-critical services such as voice and video take precedence over non-essential services such as file downloads, maintaining responsiveness of Enterprise applications

#### Voice VLAN

Voice VLAN automatically separates voice and data traffic into two different VLANs. This automatic separation places delay-sensitive traffic into a voice-dedicated VLAN, which simplifies QoS configurations.

# Open Shortest Path First (OSPFv2, OSPFv3)

 OSPF is a scalable and adaptive routing protocol for IP networks. The addition of OSPFv3 provides support for IPv6 and further strength for next generation networking.

#### sFlow

SFlow is an industry-standard technology for monitoring high-speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

#### Active Fiber Monitoring (AFM)

Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent.

#### **Tri-authentication**

Authentication options on the x320 Series also include alternatives to IEEE 802.1x port-based authentication, such as web authentication to enable guest access and MAC authentication for endpoints that do not have an IEEE 802.1x supplicant. All three authentication methods— IEEE 802.1x, MAC-based and Web-based—can be enabled simultaneously on the same port for tri-authentication.

# **TACACS+** Command Authorization

TACACS+ Command Authorization offers centralized control over which commands may be issued by each specific AlliedWare Plus device user. It complements authentication and accounting services for a complete AAA solution.

#### **Premium Software License**

By default, the x320 Series offers a comprehensive Layer 2 and Lite Layer 3 feature set that includes static routing and IPv6 management features. The feature set can easily be elevated to Basic Layer 3 by applying the premium software license. This adds dynamic routing protocols and Layer 3 multicasting capabilities.

# VLAN Access Control List (ACLs)

 ACLs simplify access and traffic control across entire segments of the network. They can be applied to a VLAN as well as a specific port.

# **Loop Protection**

- Thrash limiting, also known as rapid MAC movement, detects and resolves network loops. It is highly user-configurable—from the rate of looping traffic to the type of action the switch should take when it detects a loop.
- With thrash limiting, the switch only detects a loop when a storm has occurred, which can potentially cause disruption to the network. To avoid this, loop detection works in conjunction with thrash limiting to send special Loop Detection Frame (LDF) packets that the switch listens for. If a port receives an LDF packet, you can choose to disable the port, disable the link, or send an SNMP trap. This feature can help to detect loops before a network storm occurs, avoiding the risk and inconvenience of traffic disruption.

# Multicast Source Discovery Protocol (MSDP)

 MSDP enables two or more PIM-SM (Sparse Mode) domains to share information on active multicast sources, for more efficient forwarding of multicast traffic.

#### Link Monitoring (Linkmon)

Linkmon enables network health monitoring by regularly sending probes over key links to gather metrics comprising latency, jitter, and probe loss. This supports pro-active network management, and can also be used with triggers to automate a change to device or network configuration in response to the declining health of a monitored link.

# Key Solutions



# Enable today's smart buildings with flexible PoE

More than ever, PoE powered devices are converging on the Enterprise network to enable smooth business operation, with central management of building security and systems, as well as online user connectivity. The x320 Series are ideal for these modern business networks, with flexible PoE provision to connect and power a wide range of network and IoT devices.

The x320-10GH provides up to 90 Watts of PoE power per port, and as shown in the diagram can support high-power devices such as high resolution outdoor PTZ cameras with heater/blowers, advanced LED lighting controllers and more.

The x320-11GPT can supply up to 30 Watts of PoE power to connected devices, and can itself be powered by PoE or an AC adapter.

As shown in the diagram, the x320-10GH can use PoE to power the x320-11GPT, and also pass PoE power though it to connected devices such as IP phones, wireless access points and so on.

With their fanless design for silent operation, and supporting a wide temperature range, the x320 series offer very flexible deployment options. They can be DIN rail mounted in ceiling and other building spaces, and when powered by PoE the x320-11GPT doesn't require a separate power connection to operate. Used alongside PoE passthrough to connect and power end points, the x320 Series are an ideal solution for today's smart buildings and converged business networks.

# **Specifications**

| PRODUCT    | 10/100/1000T (RJ-45)<br>POE+ ENABLED PORTS | 10/100/1000T (RJ-45)<br>POE++ ENABLED PORTS | 10/100/1000T (RJ-45)<br>POE-IN PORT | 1000X SFP PORTS | SWITCHING FABRIC | FORWARDING RATE |
|------------|--------------------------------------------|---------------------------------------------|-------------------------------------|-----------------|------------------|-----------------|
| x320-10GH  | -                                          | 8                                           | -                                   | 2               | 24Gbps           | 14.9Mpps        |
| x320-11GPT | 8                                          | -                                           | 1                                   | 2               | 24Gbps           | 16.4Mpps        |

# Performance

- Supports 10KB L2 jumbo frames
- Wire speed multicasting
- 4094 configurable VLANs
- ▶ Up to 16K MAC addresses
- ▶ Up to 2K multicast entries
- 512MB DDR3 SDRAM, 128MB NAND flash memory
- Packet buffer memory: 1.5MB

# Reliability

- Modular AlliedWare Plus operating system
- Full environmental monitoring of PSU, fans, temperature and internal voltages. SNMP traps alert network managers in case of any failure

#### Expandability

► Versatile licensing options for additional features

# Flexibility and Compatibility

- 1G-SFP ports on x320 will support any combination of Allied Telesis 100Mbps and 1000Mbps SFP modules listed in this document under Ordering Information
- Port speed and duplex configuration can be set manually or by auto-negotiation

# **Diagnostic Tools**

- Active Fiber Monitoring detects tampering on optical links
- Built-In Self Test (BIST)
- Cable fault locator (TDR)
- Connectivity Fault Management (CFM) Continuity Check Protocol (CCP) for use with G.8032 ERPS
- Find-me device locator
- ► Automatic link flap detection and port shutdown
- Optical Digital Diagnostic Monitoring (DDM)
- Ping polling for IPv4 and IPv6
- Port mirroring
- ► Trace Route for IPv4 and IPv6
- Uni-Directional Link Detection (UDLD)

# **IPv4** Features

- Black hole routing
- Directed broadcast forwarding
- DNS relay
- ▶ Equal Cost Multi Path (ECMP) routing
- Policy-based routing
- ▶ Route maps and redistribution (OSPF and RIP)
- Static unicast and multicast routing for IPv4
- ► UDP broadcast helper (IP helper)

# **IPv6** Features

- DHCPv6 client and relay
- DNSv6 client and relay
- IPv4 and IPv6 dual stack
- IPv6 aware storm protection and QoS
- IPv6 hardware ACLs

4 x320 Series

- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- NTPv6 client and server
- Static unicast and multicast routing for IPv6
- Log to IPv6 hosts with Syslog v6
- IPv6 Ready certified

# Management

- Allied Telesis Autonomous Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- Console management port on the front panel for ease of access
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- ► Web-based Graphical User Interface (GUI)
- Industry-standard CLI with context-sensitive help
- ► Powerful CLI scripting engine
- Comprehensive SNMP MIB support for standardsbased device management
- Built-in text editor
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices
- Management stacking allows up to 24 devices to be managed from a single console

# **Quality of Service**

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- Limit bandwidth per port or per traffic class down to 64kbps
- Wire speed traffic classification with low latency essential for VoIP and real-time streaming media applications
- ▶ IPv6 QoS support
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- Policy-based storm protection
- Extensive remarking capabilities
- Queue scheduling options for Strict priority, weighted round robin or mixed scheduling
- Type of Services (ToS) IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

# **Resiliency Features**

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- EPSRing (Ethernet Protection Switched Rings) with Super-Loop Protection (SLP) and enhanced recovery for extra resiliency
- ▶ Loop protection: loop detection and thrash limiting
- PVST+ compatibility mode
- ▶ STP root guard

# **Security Features**

- Access Control Lists (ACLs) based on layer 3 and 4 headers
- Configurable auth-fail and guest VLANs
- > Dynamic ACLs assigned via port authentication
- ACL Groups enable multiple hosts/ports to be included in a single ACL, reducing configuration
- Authentication, Authorization and Accounting (AAA)
- Bootloader can be password protected for device security
- BPDU protection
- DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- DoS attack blocking and virus throttling
- ► Dynamic VLAN assignment
- MAC address filtering and MAC address lockdown
- Network Access and Control (NAC) features manage endpoint security
- Learn limits (intrusion detection) for single ports or LAGs
- Private VLANs provide security and port isolation for multiple customers using the same VLAN
- RADIUS group selection per VLAN or port
- Secure Copy (SCP)

Web-based authentication

Operating temperature range:

Storage temperature range:

Safety

-10°C to 55°C (14°F to 131°F)

-25°C to 70°C (-13°F to 158°F)

5% to 90% non-condensing

5% to 95% non-condensing

Operating altitude:

A, ICES-003 class A

Certification: UL. cUL

▶ EU RoHS compliant

China RoHS compliant

**Restrictions on Hazardous** 

Substances (RoHS) Compliance

Storage relative humidity range:

3.000 meters maximum (9.843 ft)

**Electrical Approvals and Compliances** 

▶ Immunity: EN55024, EN61000-3-levels 2

(Harmonics), and 3 (Flicker) - AC models only

Standards: UL60950-1, CAN/CSA-C22.2 No. 60950-

AlliedTelesis.com

1-03, EN60950-1, EN60825-1, AS/NZS 60950.1

EMC: EN55032 class A, FCC class A, VCCI class

Operating relative humidity range:

- Secure File Transfer (SFTP) client
- Strong password security and encryption

**Environmental Specifications** 

 Tri-authentication: MAC-based, web-based and IEEE 802.1x

# x320 Series | Gigabit Layer 3 PoE++/PoE Pass-through Switches

# **Physical Specifications**

| PPODUCT    |                                                | MOUNTING   | WEI        | PACKAGED DIMENSIONS |                                                 |  |
|------------|------------------------------------------------|------------|------------|---------------------|-------------------------------------------------|--|
| FNUDUGI    | WIDTH & DEFTH & HEIGHT                         | MOONTING   | UNPACKAGED | PACKAGED            | PAGRAGED DIMENSIONS                             |  |
| x320-10GH  | 210 x 180 x 42.5 mm<br>(8.26 x 7.08 x 1.67 in) | Rack-mount | 1.6 kg     | 2.7 kg              | 417 x 336 x 151 mm<br>(16.42 x 13.23 x 1.67 in) |  |
| x320-11GPT | 210 x 180 x 42.5 mm<br>(8.26 x 7.08 x 1.67 in) | Rack-mount | 1.6 kg     | 3.5 kg              | 417 x 336 x 151 mm<br>(16.42 x 13.23 x 1.67 in) |  |

# **Power Characteristics**

|            |                                                | MAXIMUM POE PORTS SUPPORTED |                |               |                | NO POE LOAD    |                                 | FULL POE LOAD                      |                                 |                                    |
|------------|------------------------------------------------|-----------------------------|----------------|---------------|----------------|----------------|---------------------------------|------------------------------------|---------------------------------|------------------------------------|
| PRODUCT    | MAXIMUM POE POWER                              | P0E<br>(7.5W)               | P0E<br>(15.4W) | P0E+<br>(30W) | P0E++<br>(60W) | P0E++<br>(90W) | MAX POWER<br>CONSUMPTION<br>(W) | MAX HEAT<br>DISSIPATION<br>(BTU/H) | MAX POWER<br>CONSUMPTION<br>(W) | MAX HEAT<br>DISSIPATION<br>(BTU/H) |
|            | 240W (1 x PWR300 PSU)                          | 8                           | 8              | 8             | 4              | 2              | 21 71                           |                                    | 320                             | 218                                |
| x320-10GH  | 480W (2 x PWR300 PSUs)                         | 8                           | 8              | 8             | 8              | 5              |                                 | 600                                | 409                             |                                    |
|            | 720W (3 x PWR300 PSUs)                         | 8                           | 8              | 8             | 8              | 8              |                                 | 880                                | 600                             |                                    |
|            | OW (switch powered by 30W PoE)1                | 0                           | 0              | 0             | 0              | 0              |                                 |                                    |                                 |                                    |
| x320-11GPT | 31.6W (switch powered by 60W PoE)1             | 4                           | 2              | 1             | 0              | 0              | 00                              | 75                                 | 98 (using                       | 350 (using                         |
|            | 46.2W (switch powered by 90W PoE) <sup>1</sup> | 6                           | 3              | 1             | 0              | 0              | 22 75                           |                                    | adapter)                        | adapter)                           |
|            | 62W (switch powered by AC Adaptor)             | 8                           | 4              | 2             | 0              | 0              |                                 |                                    |                                 |                                    |

# Latency (microseconds)

| PRODUCT    | PORT SPEED |       |  |  |  |
|------------|------------|-------|--|--|--|
| PRUDUCI    | 100MBPS    | 1GBPS |  |  |  |
| x320-10GH  | 5.4µs      | 3.0µs |  |  |  |
| x320-11GPT | 5.5µs      | 3.0µs |  |  |  |

# **Standards and Protocols**

#### AlliedWare Plus Operating System Version 5.5.1

# Authentication

RFC 1321MD5 Message-Digest algorithmRFC 1828IP authentication using keyed MD5

# Cryptographic Algorithms

**FIPS Approved Algorithms** 

- Encryption (Block Ciphers):
- ► AES (ECB, CBC, CFB and OFB Modes)
- ► 3DES (ECB, CBC, CFB and OFB Modes)
- Block Cipher Modes: CCM
- CMAC
- ► GCM
- ► XTS
- Digital Signatures & Asymmetric Key Generation:
- DSA
- ► ECDSA
- RSA
- Secure Hashing:
- ► SHA-1
- ► SHA-2 (SHA-224, SHA-256, SHA-384. SHA-512) Message Authentication:
- ▶ HMAC (SHA-1, SHA-2(224, 256, 384, 512)
- Random Number Generation:
- DRBG (Hash, HMAC and Counter)

# Non FIPS Approved Algorithms

| RNG (AES128/192/256) |
|----------------------|
| DES                  |
| MD5                  |

# Encryption (management traffic only)

| FIPS 180-1 | Secure Hash standard (SHA-1)            |
|------------|-----------------------------------------|
| FIPS 186   | Digital signature standard (RSA)        |
| FIPS 46-3  | Data Encryption Standard (DES and 3DES) |
|            |                                         |

# Ethernet Standards

| EEE 8 | 02.2   | Logical Link Control (LLC)            |
|-------|--------|---------------------------------------|
| EEE 8 | 02.3   | Ethernet                              |
| EEE 8 | 02.3ab | 1000BASE-T                            |
| EEE 8 | 02.3af | Power over Ethernet (PoE)             |
| EEE 8 | 02.3at | Power over Ethernet up to 30W (PoE+)  |
| EEE 8 | 02.3bt | Power over Ethernet Plus Plus (PoE++) |
| EEE 8 | 02.3az | Energy Efficient Ethernet (EEE)       |
| EEE 8 | 02.3u  | 100BASE-X                             |
| EEE 8 | 02.3x  | Flow control - full-duplex operation  |
| EEE 8 | 02.3z  | 1000BASE-X                            |
|       |        |                                       |

#### **IPv4 Features**

| RFC 768  | User Datagram Protocol (UDP)                   |
|----------|------------------------------------------------|
| RFC 791  | Internet Protocol (IP)                         |
| RFC 792  | Internet Control Message Protocol (ICMP)       |
| RFC 793  | Transmission Control Protocol (TCP)            |
| RFC 826  | Address Resolution Protocol (ARP)              |
| RFC 894  | Standard for the transmission of IP            |
|          | datagrams over Ethernet networks               |
| RFC 919  | Broadcasting Internet datagrams                |
| RFC 922  | Broadcasting Internet datagrams in the         |
|          | presence of subnets                            |
| RFC 932  | Subnetwork addressing scheme                   |
| RFC 950  | Internet standard subnetting procedure         |
| RFC 951  | Bootstrap Protocol (BootP)                     |
| RFC 1027 | Proxy ARP                                      |
| RFC 1035 | DNS client                                     |
| RFC 1042 | Standard for the transmission of IP            |
|          | datagrams over IEEE 802 networks               |
| RFC 1071 | Computing the Internet checksum                |
| RFC 1122 | Internet host requirements                     |
| RFC 1191 | Path MTU discovery                             |
| RFC 1256 | ICMP router discovery messages                 |
| RFC 1518 | An architecture for IP address allocation with |
|          | CIDR                                           |
| RFC 1519 | Classless Inter-Domain Routing (CIDR)          |
| RFC 1542 | Clarifications and extensions for BootP        |
| RFC 1591 | Domain Name System (DNS)                       |
| RFC 1812 | Requirements for IPv4 routers                  |
| RFC 1918 | IP addressing                                  |
| RFC 2581 | TCP congestion control                         |

#### **IPv6** Features

| RFC 1981     | Path MTU discovery for IPv6                            |
|--------------|--------------------------------------------------------|
| RFC 2460     | IPv6 specification                                     |
| RFC 2464     | Transmission of IPv6 packets over Ethernet<br>networks |
| RFC 3056     | Connection of IPv6 domains via IPv4 clouds             |
| RFC 3484     | Default address selection for IPv6                     |
| RFC 3596     | DNS extensions to support IPv6                         |
| RFC 4007     | IPv6 scoped address architecture                       |
| RFC 4193     | Unique local IPv6 unicast addresses                    |
| RFC 4291     | IPv6 addressing architecture                           |
| RFC 4443     | Internet Control Message Protocol (ICMPv6)             |
| RFC 4861     | Neighbor discovery for IPv6                            |
| RFC 4862     | IPv6 Stateless Address Auto-Configuration<br>(SLAAC)   |
| RFC 5014     | IPv6 socket API for source address selection           |
| RFC 5095     | Deprecation of type 0 routing headers in IPv6          |
| RFC 5175     | IPv6 Router Advertisement (RA) flags option            |
| RFC 6105     | IPv6 Router Advertisement (RA) guard                   |
| Manage       | ement                                                  |
| AT Enterpris | e MIB including AMF MIB and SNMP traps                 |
| SNMPv1, v2   | 2c and v3                                              |
| EEE 802.1A   | BLink Layer Discovery Protocol (LLDP)                  |
| RFC 1155     | Structure and identification of management             |
|              | information for TCP/IP-based Internets                 |
| RFC 1157     | Simple Network Management Protocol                     |
|              | (SNMP)                                                 |
| RFC 1212     | Concise MIB definitions                                |
| RFC 1213     | MIB for network management of TCP/                     |
|              | IP-based Internets: MIB-II                             |

| RFC 1215 | Convention for defining traps for use with the |
|----------|------------------------------------------------|
|          | SNMP                                           |
| RFC 1227 | SNMP MUX protocol and MIB                      |
| RFC 1239 | Standard MIB                                   |
| RFC 1724 | RIPv2 MIB extension                            |
| BEC 2011 | SNMPv2 MIB for IP using SMIv2                  |

- RFC 2012 SNMPv2 MIB for TCP using SMIv2
- RFC 2013 SNMPv2 MIB for UDP using SMIv2
- RFC 2096 IP forwarding table MIB
- RFC 2578 Structure of Management Information v2 (SMIv2)

<sup>1</sup> The x320-11GPT uses PD port 11 to receive PoE power, but cannot be powered by PoE if the AC adapter is connected

# x320 Series | Gigabit Layer 3 PoE++/PoE Pass-through Switches

| RFC 2579<br>RFC 2580<br>RFC 2674 | Textual conventions for SMIv2<br>Conformance statements for SMIv2<br>Definitions of managed objects for bridges<br>with traffic classes, multicast filtering and<br>VI AN extensions |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REC 2741                         | Agent extensibility (AgentX) protocol                                                                                                                                                |
| RFC 2787                         | Definitions of managed objects for VBRP                                                                                                                                              |
| RFC 2819                         | BMON MIB (groups 1 2 3 and 9)                                                                                                                                                        |
| RFC 2863                         | Interfaces group MIB                                                                                                                                                                 |
| RFC 3164                         | Syslog protocol                                                                                                                                                                      |
| RFC 3176                         | sFlow: a method for monitoring traffic in                                                                                                                                            |
|                                  | switched and routed networks                                                                                                                                                         |
| RFC 3411                         | An architecture for describing SNMP                                                                                                                                                  |
|                                  | management frameworks                                                                                                                                                                |
| RFC 3412                         | Message processing and dispatching for the                                                                                                                                           |
|                                  | SNMP                                                                                                                                                                                 |
| RFC 3413                         | SNMP applications                                                                                                                                                                    |
| RFC 3414                         | User-based Security Model (USM) for                                                                                                                                                  |
|                                  | SNMPv3                                                                                                                                                                               |
| RFC 3415                         | View-based Access Control Model (VACM)<br>for SNMP                                                                                                                                   |
| RFC 3416                         | Version 2 of the protocol operations for the SNMP                                                                                                                                    |
| RFC 3417                         | Transport mappings for the SNMP                                                                                                                                                      |
| RFC 3418                         | MIB for SNMP                                                                                                                                                                         |
| RFC 3621                         | Power over Ethernet (PoE) MIB                                                                                                                                                        |
| RFC 3635                         | Definitions of managed objects for the                                                                                                                                               |
|                                  | Ethernet-like interface types                                                                                                                                                        |
| RFC 3636                         | IEEE 802.3 MAU MIB                                                                                                                                                                   |
| RFC 4188                         | Definitions of managed objects for bridges                                                                                                                                           |
| RFC 4318                         | Definitions of managed objects for bridges<br>with RSTP                                                                                                                              |
| RFC 4560                         | Definitions of managed objects for remote<br>ping, traceroute and lookup operations                                                                                                  |
| RFC 6527                         | Definitions of managed objects for VRRPv3                                                                                                                                            |
|                                  |                                                                                                                                                                                      |

# **Multicast Support**

| mannout      | n ouppoirt                                   |
|--------------|----------------------------------------------|
| Bootstrap Ro | outer (BSR) mechanism for PIM-SM             |
| IGMP query   | solicitation                                 |
| IGMP snoopi  | ng (IGMPv1, v2 and v3)                       |
| IGMP snoopi  | ng fast-leave                                |
| IGMP/MLD r   | nulticast forwarding (IGMP/MLD proxy)        |
| MLD snoopir  | ng (MLDv1 and v2)                            |
| PIM for IPv6 |                                              |
| RFC 1112     | Host extensions for IP multicasting (IGMPv1) |
| RFC 2236     | Internet Group Management Protocol v2        |
|              | (IGMPv2)                                     |
| RFC 2710     | Multicast Listener Discovery (MLD) for IPv6  |
| RFC 2715     | Interoperability rules for multicast routing |
|              | protocols                                    |
| RFC 3306     | Unicast-prefix-based IPv6 multicast          |
|              | addresses                                    |
| RFC 3376     | IGMPv3                                       |
| RFC 3618     | Multicast Source Discovery Protocol (MSDP)   |
| RFC 3810     | Multicast Listener Discovery v2 (MLDv2) for  |
|              | IPv6                                         |
| RFC 3956     | Embedding the Rendezvous Point (RP)          |
|              | address in an IPv6 multicast address         |
| RFC 3973     | PIM Dense Mode (DM)                          |
| RFC 4541     | IGMP and MLD snooping switches               |
| RFC 4601     | Protocol Independent Multicast - Sparse      |
|              | Mode (PIM-SM): protocol specification        |
|              | (revised)                                    |
| RFC 4604     | Using IGMPv3 and MLDv2 for source-           |
|              | specific multicast                           |
| RFC 4607     | Source-specific multicast for IP             |

# OSPF link-local signaling OSPF MD5 authentication

**Open Shortest Path First (OSPF)** 

| OSPF restart signaling  |                                              |  |
|-------------------------|----------------------------------------------|--|
| Out-of-band LSDB resync |                                              |  |
| RFC 1245                | OSPF protocol analysis                       |  |
| RFC 1246                | Experience with the OSPF protocol            |  |
| RFC 1370                | Applicability statement for OSPF             |  |
| RFC 1765                | OSPF database overflow                       |  |
| RFC 2328                | 0SPFv2                                       |  |
| RFC 2370                | OSPF opaque LSA option                       |  |
| RFC 2740                | OSPFv3 for IPv6                              |  |
| RFC 3101                | OSPF Not-So-Stubby Area (NSSA) option        |  |
| RFC 3509                | Alternative implementations of OSPF area     |  |
|                         | border routers                               |  |
| RFC 3623                | Graceful OSPF restart                        |  |
| RFC 3630                | Traffic engineering extensions to OSPF       |  |
| RFC 4552                | Authentication/confidentiality for OSPFv3    |  |
| RFC 5329                | Traffic engineering extensions to OSPFv3     |  |
|                         |                                              |  |
| Quality of              | of Service (QoS)                             |  |
| IEEE 802.1p             | Priority tagging                             |  |
| RFC 2211                | Specification of the controlled-load network |  |
|                         | element service                              |  |
| RFC 2474                | DiffServ precedence for eight queues/port    |  |
| RFC 2475                | DiffServ architecture                        |  |
| RFC 2597                | DiffServ Assured Forwarding (AF)             |  |
| RFC 2697                | A single-rate three-color marker             |  |
| RFC 2698                | A two-rate three-color marker                |  |
| RFC 3246                | DiffServ Expedited Forwarding (EF)           |  |
|                         |                                              |  |

# **Resiliency Features**

| TU-T G.8023 / Y.1344 Ethernet Ring Protection  |                                              |  |  |
|------------------------------------------------|----------------------------------------------|--|--|
|                                                | Switching (ERPS)                             |  |  |
| IEEE 802.1ag                                   | CFM Continuity Check Protocol (CCP)          |  |  |
| EEE 802.1AX Link aggregation (static and LACP) |                                              |  |  |
| EEE 802.1D                                     | MAC bridges                                  |  |  |
| EEE 802.1s                                     | Multiple Spanning Tree Protocol (MSTP)       |  |  |
| IEEE 802.1w                                    | Rapid Spanning Tree Protocol (RSTP)          |  |  |
| IEEE 802.3ad                                   | IStatic and dynamic link aggregation         |  |  |
| RFC 5798                                       | Virtual Router Redundancy Protocol version 3 |  |  |
|                                                | (VRRPv3) for IPv4 and IPv6                   |  |  |
|                                                |                                              |  |  |

#### **Routing Information Protocol (RIP)** RFC 1058 Routing Information Protocol (RIP)

|                                                      | ······································ |  |
|------------------------------------------------------|----------------------------------------|--|
| RFC 2080                                             | RIPng for IPv6                         |  |
| RFC 2081                                             | RIPng protocol applicability statement |  |
| RFC 2082                                             | RIP-2 MD5 authentication               |  |
| RFC 2453                                             | RIPv2                                  |  |
|                                                      |                                        |  |
| Security                                             | Features                               |  |
| SSH remote                                           | login                                  |  |
| SSLv2 and SSLv3                                      |                                        |  |
| TACACS+ Accounting, Authentication and Authorization |                                        |  |
| (AAA)                                                |                                        |  |
|                                                      |                                        |  |

| IEEE 802.1X | Authentication protocols (TLS, TTLS, PEAP |
|-------------|-------------------------------------------|
|             | and MD5)                                  |

IEEE 802.1X Multi-supplicant authentication

- IEEE 802.1X Port-based network access control
- RFC 2246 TLS protocol v1.0 RFC 2818 HTTP over TLS ("HTTPS")
- RFC 2865 RADIUS authentication
- RFC 2866 RADIUS accounting
- RFC 2868 RADIUS attributes for tunnel protocol support
- RFC 3546 Transport Layer Security (TLS) extensions

| RFC 3579 | RADIUS support for Extensible Authentication<br>Protocol (EAP) |
|----------|----------------------------------------------------------------|
| RFC 3580 | IEEE 802.1x RADIUS usage guidelines                            |
| RFC 3748 | PPP Extensible Authentication Protocol (EAP)                   |
| RFC 4251 | Secure Shell (SSHv2) protocol architecture                     |
| RFC 4252 | Secure Shell (SSHv2) authentication protocol                   |
| RFC 4253 | Secure Shell (SSHv2) transport layer protocol                  |
| RFC 4254 | Secure Shell (SSHv2) connection protocol                       |
| RFC 5246 | Transport Layer Security (TLS) v1.2                            |
| RFC 5280 | X.509 certificate and Certificate Revocation                   |
|          | List (CRL) profile                                             |
| RFC 5425 | Transport Layer Security (TLS) transport                       |
|          | mapping for Syslog                                             |
| RFC 5656 | Elliptic curve algorithm integration for SSH                   |
| RFC 6125 | Domain-based application service identity                      |
|          | within PKI using X.509 certificates with TLS                   |
| RFC 6614 | Transport Layer Security (TLS) encryption for                  |
|          | RADIUS                                                         |
| RFC 6668 | SHA-2 data integrity verification for SSH                      |
|          |                                                                |
| Sarving  |                                                                |

#### Services F

| RFC 854  | Telnet protocol specification             |
|----------|-------------------------------------------|
| RFC 855  | Telnet option specifications              |
| RFC 857  | Telnet echo option                        |
| RFC 858  | Telnet suppress go ahead option           |
| RFC 1091 | Telnet terminal-type option               |
| RFC 1350 | Trivial File Transfer Protocol (TFTP)     |
| RFC 1985 | SMTP service extension                    |
| RFC 2049 | MIME                                      |
| RFC 2131 | DHCPv4 (server, relay and client)         |
| RFC 2132 | DHCP options and BootP vendor extensions  |
| RFC 2616 | Hypertext Transfer Protocol - HTTP/1.1    |
| RFC 2821 | Simple Mail Transfer Protocol (SMTP)      |
| RFC 2822 | Internet message format                   |
| RFC 3046 | DHCP relay agent information option (DHCF |
|          | option 82)                                |
| RFC 3315 | DHCPv6 (server, relay and client)         |
| RFC 3633 | IPv6 prefix options for DHCPv6            |
| RFC 3646 | DNS configuration options for DHCPv6      |
| RFC 3993 | Subscriber-ID suboption for DHCP relay    |
|          | agent option                              |
| RFC 4330 | Simple Network Time Protocol (SNTP)       |
|          | version 4                                 |
| RFC 5905 | Network Time Protocol (NTP) version 4     |

# VLAN Support

Generic VLAN Registration Protocol (GVRP) IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q) IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3acVLAN tagging

### Voice over IP (VoIP)

LLDP-MED ANSI/TIA-1057 Voice VLAN

# **Feature Licenses**

Alied Telesis" AT-PWR300

POWER O

1

| NAME            | DESCRIPTION            | INCLUDES                                                                                                                                                                                                         |
|-----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-FL-x320-01   | x320 premium license   | <ul> <li>OSPF (256 routes)</li> <li>PIMv4-SM, DM, and SSM</li> <li>RIPng (256 routes)</li> <li>OSPFv3 (256 routes)</li> <li>PIMv6-SM and SSM</li> <li>MLD v1/v2</li> <li>VLAN double tagging (Q-in-Q)</li> </ul> |
| AT-FL-x320-8032 | ITU-T G.8032 license   | <ul><li>G.8032 ring protection</li><li>Ethernet CFM</li></ul>                                                                                                                                                    |
| AT-FL-x320-CPOE | Continuous PoE license | Continuous PoE power                                                                                                                                                                                             |

# **Ordering Information**

#### Switches

19 inch rack-mount brackets included

#### AT-x320-10GH

8-port 10/100/1000T PoE++ switch with 2 SFP ports, and 3 external PSU ports<sup>2</sup>

#### AT-x320-11GPT

8-port 10/100/1000T PoE+ switch with 2 SFP ports, one AC adapter port^3, and one PoE-in port^4 (supporting PD and PoE pass-through)

# **Power Supplies**

#### AT-PWR300-xx

300W PoE power supply (for x320-10GH and GS980EM/10H switches)

Where xx = 10 for US power cord

- 20 for no power cord
- 30 for UK power cord
- 40 for Australian power cord 50 for European power cord
- <sup>2</sup> PWR300 power supplies for the x320-10GH must be ordered
- separately
- <sup>3</sup> The x320-11GPT ships with an AC power adapter
- <sup>4</sup> The x320-11GPT can be powered by PoE from 30W (class 4) to 90W (class 8)

#### SFP Modules

# AT-SPTX

1000T 100 m copper

# AT-SPSX

1000SX GbE multi-mode 850 nm fiber up to 550 m

# AT-SPSX/I

1000SX GbE multi-mode 850 nm fiber up to 550 m industrial temperature

AT-SPEX 1000X GbE multi-mode 1310 nm fiber up to 2 km

#### AT-SPLX10

1000LX GbE single-mode 1310 nm fiber up to 10 km  $\,$ 

# AT-SPLXI0/I

1000LX GbE single-mode 1310 nm fiber up to 10 km industrial temperature

#### AT-SPBDI0-13 1000LX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 10 km

AT-SPBDI0-14 1000LX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 10 km

# AT-SPLX40

1000LX GbE single-mode 1310 nm fiber up to 40 km

# AT-SPZX80

1000ZX GbE single-mode 1550 nm fiber up to 80 km

#### AT-SPBD20-13/I

1000BX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 20 km

# AT-SPBD20-14/I

1000BX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 20 km

# AT-SPBD40-13/I

1000LX GbE single-mode Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 40 km, industrial temperature

# AT-SPBD40-14/I

1000LX GbE single-mode Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 40 km, industrial temperature

